概述
线程池技术想必大家都不陌生把,相信在平时的工作中没有少用,而且这也是面试频率非常高的一个知识点,那么大家知道它的实现原理和细节吗?如果直接去看jdk源码的话,可能有一定的难度,那么我们可以先通过手写一个简单的线程池框架,去掌握线程池的基本原理后,再去看jdk的线程池源码就会相对容易,而且不容易忘记。
线程池框架设计
我们都知道,线程资源的创建和销毁并不是没有代价的,甚至开销是非常高的。同时,线程也不是任意多创建的,因为活跃的线程会消耗系统资源,特别是内存,在一定的范围内,增加线程可以提高系统的吞吐率,如果超过了这个范围,反而会降低程序的执行速度。
因此,设计一个容纳多个线程的容器,容器中的线程可以重复使用,省去了频繁创建和销毁线程对象的操作, 达到下面的目标:
- 降低资源消耗,减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务
- 提高响应速度,当任务到达时,如果有线程可以直接用,不会出现系统僵死
- 提高线程的可管理性,如果无限制的创建线程,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控
线程池的核心思想: 线程复用,同一个线程可以被重复使用,来处理多个任务。
为了实现线程池功能,需要考虑下面几个设计要点:
- 线程池可以接口外部提交的任务执行
- 线程池有工作线程的数量,有任务执行,没有任务也空闲在那,等待任务过来,这样既避免线程频繁创建销毁带来的开销,同时也可以避免线程池无限制的创建线程
- 如果线程池接受提交的任务超过工作线程的数量了,该怎么办?可以用一个队列把任务存下来,等工作线程完成任务后去队列中获取任务,执行
- 那如果任务实在是太多太多了,达到了我们认为的队列最大值,怎么办,我们可以设计一种任务太多的策略,可以进行切换,比如直接丢弃任务、报错等等
看了上面的设计目标和要点,是不是能立刻想到一个非常经典的设计模型——生产者消费者模型。
- 阻塞队列存储执行任务,比如外部main函数作为生产者向队列生产任务。
- 线程池中的工作线程作为消费者获取任务执行。
现在我们将我们的设计思路转换为代码。
代码实现
阻塞队列的实现
- 阻塞队列主要存放任务,有容量限制
- 阻塞队列提供添加和删除任务的API, 如果超过容量,阻塞不能添加任务,如果没有任务,阻塞无法获取任务。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | /** * <p>自定义任务队列, 用来存放任务 </p> * * @author: cxw (332059317@qq.com) * @date: 2022/10/18 10:15 * @version: 1.0.0 */ @Slf4j (topic = "c.BlockingQueue" ) public class BlockingQueue<t> { // 容量 private int capcity; // 双端任务队列容器 private Deque<t> deque = new ArrayDeque(); // 重入锁 private ReentrantLock lock = new ReentrantLock(); // 生产者条件变量 private Condition fullWaitSet = lock.newCondition(); // 生产者条件变量 private Condition emptyWaitSet = lock.newCondition(); public BlockingQueue( int capcity) { this .capcity = capcity; } // 阻塞的方式添加任务 public void put(T task) { lock.lock(); try { // 通过while的方式 while (deque.size() >= capcity) { log.debug( "wait to add queue" ); try { fullWaitSet.await(); } catch (InterruptedException e) { e.printStackTrace(); } } deque.offer(task); log.debug( "task add successfully" ); emptyWaitSet.signal(); } finally { lock.unlock(); } } // 阻塞获取任务 public T take() { lock.lock(); try { // 通过while的方式 while (deque.isEmpty()) { try { log.debug( "wait to take task" ); emptyWaitSet.await(); } catch (InterruptedException e) { e.printStackTrace(); } } fullWaitSet.signal(); T task = deque.poll(); log.debug( "take task successfully" ); // 从队列中获取元素 return task; } finally { lock.unlock(); } } }</t></t> |
- put()方法是向阻塞队列中添加任务
- take()方法是向阻塞队列中获取任务
线程池消费端实现
1.定义执行器接口
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | /** * <p>定义一个执行器的接口:</p> * * @author: cxw (332059317@qq.com) * @date: 2022/10/18 12:31 * @version: 1.0.0 */ public interface Executor { /** * 提交任务执行 * @param task 任务 */ void execute(Runnable task); } |
2.定义线程池类实现该接口
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | @Slf4j (topic = "c.ThreadPool" ) public class ThreadPool implements Executor { /** * 任务队列 */ private BlockingQueue<runnable> taskQueue; /** * 核心工作线程数 */ private int coreSize; /** * 工作线程集合 */ private Set<worker> workers = new HashSet(); /** * 创建线程池 * @param coreSize 工作线程数量 * @param capcity 阻塞队列容量 */ public ThreadPool( int coreSize, int capcity) { this .coreSize = coreSize; this .taskQueue = new BlockingQueue(capcity); } /** * 提交任务执行 */ @Override public void execute(Runnable task) { synchronized (workers) { // 如果工作线程数小于阈值,直接开始任务执行 if (workers.size() </worker></runnable> |
- Worker类是工作线程类,包装了执行任务,里面实现了从队列获取任务,然后执行任务。
- execute方法的实现中,如果工作线程数量小于阈值的话,直接创建新的工作线程,否则将任务添加到队列中。
3.演示
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | @Test public void testThreadPool1() throws InterruptedException { Executor executor = new ThreadPool( 2 , 4 ); // 提交任务 for ( int i = 0 ; i { try { Thread.sleep( 10 ); log.info( "run task {}" , j); } catch (InterruptedException e) { e.printStackTrace(); } }); Thread.sleep( 10 ); } Thread.sleep( 10000 ); } |
运行结果:
获取任务超时设计
目前从队列中获取任务是永久阻塞等待的,可以改成阻塞一段时间没有获取任务,丢弃的策略。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | @Slf4j (topic = "c.TimeoutBlockingQueue" ) public class TimeoutBlockingQueue<t> { // 容量 private int capcity; // 双端任务队列容器 private Deque<t> deque = new ArrayDeque(); // 重入锁 private ReentrantLock lock = new ReentrantLock(); // 生产者条件变量 private Condition fullWaitSet = lock.newCondition(); // 生产者条件变量 private Condition emptyWaitSet = lock.newCondition(); public TimeoutBlockingQueue( int capcity) { this .capcity = capcity; } // 带超时时间的获取 public T poll( long timeout, TimeUnit unit){ lock.lock(); try { // 将 timeout 统一转换为 纳秒 long nanos = unit.toNanos(timeout); while (deque.isEmpty()){ try { if (nanos</t></t> |
新加TimeoutBlockingQueue类,添加offer和poll待超时的添加和获取任务的方法。
拒绝策略设计
目前的实现还是有个漏洞,无法自定义任务超出阈值的一个拒绝策略,我们可以通过利用函数式编程+策略模式去实现。
1.定义策略模式的函数式接口
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | /** * <p>拒绝策略的函数式接口:</p> * * @author: cxw (332059317@qq.com) * @date: 2022/10/18 13:15 * @version: 1.0.0 */ @FunctionalInterface public interface RejectPolicy<t> { /** * 拒绝策略的接口 * @param queue * @param task */ void reject(BlockingQueue<t> queue, T task); }</t></t> |
2.添加函数式接口的调用入口
我们可以在阻塞队列添加任务新加一个api, 添加任务如果超过容量,调用函数式接口。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | @Slf4j (topic = "c.BlockingQueue" ) public class BlockingQueue<t> { ........ /** * 尝试添加任务 * @param rejectPolicy * @param task */ public void tryPut(RejectPolicy<t> rejectPolicy, T task) { lock.lock(); try { // 如果队列超过容量 if (deque.size()> capcity){ log.debug( "task too much, do reject" ); rejectPolicy.reject( this , task); } else { deque.offer(task); emptyWaitSet.signal(); } } finally { lock.unlock(); } } }</t></t> |
3.修改ThreadPool类
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | @Slf4j (topic = "c.ThreadPool" ) public class ThreadPool implements Executor { ..... /** * 拒绝策略 */ private RejectPolicy rejectPolicy; // 通过构造方法传入执行的拒绝策略 public ThreadPool( int coreSize, int capcity, RejectPolicy rejectPolicy) { this .coreSize = coreSize; this .taskQueue = new BlockingQueue(capcity); this .rejectPolicy = rejectPolicy; } /** * 提交任务执行 */ @Override public void execute(Runnable task) { synchronized (workers) { // 如果工作线程数小于阈值,直接开始任务执行 if (workers.size() |
通过构造方法的方式传入要执行的拒绝策略
调用tryPut方法添加任务
4.演示
以上就是Java实现手写一个线程池的示例代码的详细内容,更多关于Java线程池的资料请关注IT俱乐部其它相关文章!