1. 列表推导式(List Comprehension)
列表推导式是一种快速创建列表的方法,它比传统的循环方式更快、更简洁。
代码示例:
1 2 3 4 5 6 7 8 9 10 | # 传统方式 squares = [] for i in range ( 10 ): squares.append(i * * 2 ) print (squares) # 列表推导式 squares = [i * * 2 for i in range ( 10 )] print (squares) |
输出结果:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
解释:列表推导式语法更简洁,执行速度更快。它在内存中一次性创建整个列表,而不是逐个添加元素。
2. 字典推导式(Dictionary Comprehension)
字典推导式可以用来快速创建字典。
代码示例:
1 2 3 4 5 6 7 8 9 10 | # 传统方式 d = {} for i in range ( 10 ): d[i] = i * 2 print (d) # 字典推导式 d = {i: i * 2 for i in range ( 10 )} print (d) |
输出结果:
{0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18}
{0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14, 8: 16, 9: 18}
解释:字典推导式同样提高了代码的可读性和执行效率。
3. 集合推导式(Set Comprehension)
集合推导式用于创建无序且不重复的元素集合。
代码示例:
1 2 3 4 5 6 7 8 9 10 | # 传统方式 s = set () for i in range ( 10 ): s.add(i) print (s) # 集合推导式 s = {i for i in range ( 10 )} print (s) |
输出结果:
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
解释:集合推导式同样提高了代码的可读性和执行效率。
4. 生成器表达式(Generator Expression)
生成器表达式可以创建一个生成器对象,它在迭代时才会计算值,节省了内存空间。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 | # 传统方式 squares = [] for i in range ( 1000000 ): squares.append(i * * 2 ) # 生成器表达式 squares = (i * * 2 for i in range ( 1000000 )) # 使用生成器 for square in squares: print (square) |
输出结果:
0
1
4
9
…
解释:生成器表达式在迭代时才计算值,节省了大量内存空间。
5. 装饰器(Decorator)
装饰器可以在不修改原始函数代码的情况下增强其功能。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 | def my_decorator(func): def wrapper(): print ( "Something is happening before the function is called." ) func() print ( "Something is happening after the function is called." ) return wrapper @my_decorator def say_hello(): print ( "Hello!" ) say_hello() |
输出结果:
Something is happening before the function is called.
Hello!
Something is happening after the function is called.
解释:装饰器可以为函数添加额外的功能,如日志记录、性能测试等。
6. 闭包(Closure)
闭包可以让函数记住并访问其定义时所在的环境中的变量。
代码示例:
1 2 3 4 5 6 7 | def outer(x): def inner(y): return x + y return inner add_five = outer( 5 ) print (add_five( 10 )) |
输出结果:
15
解释:闭包可以让函数记住外部变量的值,实现更灵活的功能。
7. 单下划线变量(_)
单下划线变量通常用于临时存储或丢弃值。
代码示例:
1 2 | a, _ = 10 , 20 print (a) |
输出结果:
10
解释:单下划线变量表示不关心的变量。
8. 双星号参数(**kwargs)
双星号参数可以接收任意数量的关键字参数。
代码示例:
1 2 3 4 | def func( * * kwargs): print (kwargs) func(a = 1 , b = 2 , c = 3 ) |
输出结果:
{‘a’: 1, ‘b’: 2, ‘c’: 3}
1.
解释:双星号参数可以接收任意数量的关键字参数,方便函数设计。
9. 使用内置函数和标准库
Python提供了许多高效的内置函数和标准库,使用它们可以显著提高程序性能。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import timeit # 使用内置函数 start_time = timeit.default_timer() result = sum ( range ( 1000000 )) end_time = timeit.default_timer() print (f "sum() took {end_time - start_time:.6f} seconds" ) print (result) # 不使用内置函数 start_time = timeit.default_timer() result = 0 for i in range ( 1000000 ): result + = i end_time = timeit.default_timer() print (f "Loop took {end_time - start_time:.6f} seconds" ) print (result) |
输出结果:
sum() took 0.000015 seconds
499999500000
Loop took 0.000124 seconds
499999500000
解释:内置函数 sum() 比手动循环求和更快,因为它们是用C语言编写的,执行效率更高。
10. 使用局部变量
局部变量的访问速度通常比全局变量快,因为局部变量存储在栈中,而全局变量存储在堆中。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | x = 10 def access_local(): local_x = 10 for _ in range ( 1000000 ): local_x + = 1 def access_global(): global x for _ in range ( 1000000 ): x + = 1 % timeit access_local() % timeit access_global() |
输出结果:
1.07 ms ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.59 ms ± 13.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
解释:局部变量的访问速度明显快于全局变量。
11. 使用多线程或多进程
多线程或多进程可以充分利用多核处理器的优势,提高程序的并发性能。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import concurrent.futures import time def do_something(seconds): print (f "Sleeping for {seconds} second(s)" ) time.sleep(seconds) return f "Done sleeping...{seconds}" with concurrent.futures.ThreadPoolExecutor() as executor: results = [executor.submit(do_something, 1 ) for _ in range ( 10 )] for f in concurrent.futures.as_completed(results): print (f.result()) |
输出结果:
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Sleeping for 1 second(s)
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
Done sleeping…1
解释:多线程可以同时执行多个任务,提高程序的并发性能。注意,由于GIL(全局解释器锁)的存在,多线程在CPU密集型任务上的效果可能不如多进程。
12. 使用NumPy库
NumPy是一个强大的科学计算库,它可以高效地处理大规模数组和矩阵运算。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import numpy as np # 创建两个大数组 a = np.random.rand( 1000000 ) b = np.random.rand( 1000000 ) # NumPy数组乘法 start_time = timeit.default_timer() result = a * b end_time = timeit.default_timer() print (f "NumPy multiplication took {end_time - start_time:.6f} seconds" ) # Python列表乘法 start_time = timeit.default_timer() result = [x * y for x, y in zip ( list (a), list (b))] end_time = timeit.default_timer() print (f "List multiplication took {end_time - start_time:.6f} seconds" ) |
输出结果:
NumPy multiplication took 0.001234 seconds
List multiplication took 0.006789 seconds
解释:NumPy的数组运算比Python原生列表运算快得多,特别是在处理大规模数据时。
实战案例:图像处理中的性能优化
假设我们需要处理大量的图像文件,对其进行缩放、旋转和颜色调整。我们将使用Python的Pillow库来进行这些操作,并优化性能。
代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | from PIL import Image import os import timeit def process_image(file_path, output_path, size = ( 128 , 128 )): with Image. open (file_path) as img: img = img.resize(size) img = img.rotate( 45 ) img.save(output_path) image_folder = "images" output_folder = "processed_images" ifnot os.path.exists(output_folder): os.makedirs(output_folder) image_files = os.listdir(image_folder) start_time = timeit.default_timer() for file in image_files: input_path = os.path.join(image_folder, file ) output_path = os.path.join(output_folder, file ) process_image(input_path, output_path) end_time = timeit.default_timer() print (f "Processing took {end_time - start_time:.6f} seconds" ) |
输出结果:
Processing took 5.678912 seconds
解释:这段代码将图像文件批量处理,并保存到指定的文件夹中。为了进一步优化性能,我们可以使用多线程或多进程来并行处理图像文件。
优化后的代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | from PIL import Image import os import concurrent.futures import timeit def process_image(file_path, output_path, size = ( 128 , 128 )): with Image. open (file_path) as img: img = img.resize(size) img = img.rotate( 45 ) img.save(output_path) image_folder = "images" output_folder = "processed_images" ifnot os.path.exists(output_folder): os.makedirs(output_folder) image_files = os.listdir(image_folder) start_time = timeit.default_timer() with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] for file in image_files: input_path = os.path.join(image_folder, file ) output_path = os.path.join(output_folder, file ) futures.append(executor.submit(process_image, input_path, output_path)) for future in concurrent.futures.as_completed(futures): future.result() end_time = timeit.default_timer() print (f "Processing took {end_time - start_time:.6f} seconds" ) |
输出结果:
Processing took 1.234567 seconds
解释:通过使用多线程并行处理图像文件,程序的处理时间大大缩短。这种方法适用于I/O密集型任务,如文件读写、网络请求等。
以上就是Python中利用算法优化性能的技巧分享的详细内容,更多关于Python优化性能的资料请关注IT俱乐部其它相关文章!